
ALS controls

Accessing the BPM FADs

Chris Timossi

Advanced

Light 

Source



Advanced Light Source Computer Controls Group.

Chris Timossi.
Lawrence Berkeley Lab

ms 10-110
(510) 486-5385



ALS controls Accessing the BPM FADs Contents  ••  i

Contents

Overview 3
Beam Position Monitor Hardware........................................................................................ 3
Beam Position Monitor Software (ILC)................................................................................ 3
Controlling a FAD............................................................................................................... 4

Single Trigger Mode.............................................................................................. 4
Continuous Trigger Mode...................................................................................... 4
Simultaneous Access by Multiple Programs............................................................ 5
Validity of readings................................................................................................ 5

Using FADLIB 7
Description.......................................................................................................................... 7
Subroutines.......................................................................................................................... 7
Structures........................................................................................................................... 10
Constants........................................................................................................................... 10
Sample Code...................................................................................................................... 11

Glossary of Terms 19

Index 21





ALS controls Accessing the BPM FADs Overview  ••  3

Overview

Beam Position Monitor Hardware

The BPMs are high resolution position monitors placed around the accelerator.
Physically, the BPM electronics monitors 4 pickups called buttons. The signals
from these buttons are made available directly as video outputs (sometimes summed
to produce an intensity monitor) and as inputs to an ILC  via 4 'slow' 16 bit A/Ds.
The A/D is refered to as slow since it will only be reliable when more than about
one millisecond of beam is present (enough beam to charge up a capacitor). For the
32 monitors in the Booster Ring and the 96 monitors in the storage ring the button
signals are also brought into  Fast A/Ds connected to two seperate 1024 deep FIFOs.
The Fast A/D or FADs, can digitize the data to 8 bit accuracy at the revolution rate
of the accelerator giving a turn by turn profile of the position for 1023 consecutive
turns. The two FIFOs are labeled 'FAST' and 'SLOW'. The Fast FIFO always
contains the data digitized at the full revolution rate of the booster or storage ring.
The Slow FIFO, can be programmed to digitize every 10, 100, or 1000 turns
giving a longer time record of the acceleration cycle. Once the FADs have been
enabled, data continuously flows through the FIFOs until an external halt trigger is
generated (usually by an external source like a Stanford Timer). The data is then
frozen and available to the control system via the ILC. To be able to adjust to a wide
range of beam intensities, the gain of the button amplifiers has to be set so that the
incomming signal remains in the linear portion of the amplifiers range.

Beam Position Monitor Software (ILC)
An ILC is included in each BPM chassis to provide local processing and
communication to the main control system. The ILC performs the following local
processing of the button data: in slow mode (using the 16 bit A/D), the ILC
averages the readings and calculates the x and y positions using constants supplied
by its local database. The ILC also implements a 'calibration' routine which
attempts to achieve the highest accuracy of reading by compensating for the gain
and offset differences of the four amplifiers. For the FAD's (or FAD mode), the ILC
also performs conversion to position.



4  ••  Overview ALS controls Accessing the BPM FADs

Controlling a FAD
At the workstation or PC level, the FADs can be controlled by high level calls to a
library or by direct manipulation of a special control byte in the BPM database. In
either case, it is important to understand the steps involved in controlling the FADs.

Single Trigger Mode
Application is responsible for
enabling the FADs

Both the Storage Ring FADs and the Booster Ring FADs can be operated in single
trigger mode. In single trigger mode, the application must initialize a FAD any time
new data is needed. The process looks like:

Initializing
In this step the FAD is enabled to take data. The slow FIFO is given its rate to
digitize: every turn, every 10 turns every 100 turns, every 1000 turns. Once the
FAD is initialized, data will flow through the FIFOs until a Halt Trigger is
detected by the electronics.

Triggering
After the FAD has been initialized, a check must be made to see if the external
trigger has occured before any data is read from the FIFO. Once the FAD has
triggered, the data from the fifos are read into the ILC and does not change again
until the fad is re-initialized.

Set Read Mode
The ILC can be told to deliver data from either the fast or slow FIFO and to deliver
the raw 4 button A/D reading for each turn or to deliver the calculated x or y
positions.

Wait for data
Once the trigger has occured, the data will still take time to be sent from the ILC to
the main database in the CMM.

Read Data
The data is valid and is read by the requesting application. The Read Mode can be
changed and different data requested.

Continuous Trigger Mode
In continuous mode, 20 turns
of data is continually aquired
by the ILC. Applications just
read the data.

The Storage ring FADs can operate in a new mode called  'continuous trigger'
mode. In this mode, new data is read into the ILC from the FIFO every time a halt
trigger occurs. In addition, the first 20 turns from the FIFO are delivered to the
main database for use by applications in less than .1 sec so that the data can be
displayed at the rate of  Injection. The access to the data involves the following
steps:

Initializing
This step is only done once to enable the FADs and select the rate of the slow FIFO.



ALS controls Accessing the BPM FADs Overview  ••  5

Set Read Mode
Data can be read either from the fast or slow fifo. Either x AND y data OR the sum
of the 4 button signals can be selected. This is different from the booster which
reports x OR y OR 4 button values. Once the mode is set, the data sent from the ILC
to the CMM. The data is marked with a counter that is incremented each time a halt
trigger is detected at the ILC.

Read Data
Data from the FADs is available in the CMM. The data changes at the rate of the
External Halt trigger. X & Y position data is returned in integer format in units of
meters; the application must divide by 1000 to get the value in millimeters. The
SUM data is also in integer format (0-1020).

Simultaneous Access by Multiple Programs
From the above discussion, it is apparent that different applications can collide over
the control of the FADs. Conflicts can occur with programs that change the Read
Mode (x,y,raw), the frequency of the slow fifo, or the trigger mode (single,
continous). Many different applications can read the data, however, once the FADs
have been setup. Also, when the BPMs are told to report FAD data, the rate at
which the slow mode (high accuracy) position data is reported back to an
application is degraded.

Validity of readings
Many factors can influence the validity of the data read from the fads. Some error
conditions cannot or are not detected by the routines. The most typical problem is
incorrect gain setting of the BPMs. If the gain is too high, the position read by the
routines can be far different than the actual position. Another problem is the
position of the external halt trigger which stops the capture of data into the FIFOs;
for the booster, the triggering can be set to time during which no beam occurs.





ALS controls Accessing the BPM FADs Using FADLIB  ••  7

Using FADLIB

Description
Fadlib is a windows Dynamic Link Library (DLL) that can be used to access the
BPM FADs for high level control. The routines in the library are generally divided
between Storage Ring and Booster Ring. The DLL looks up BPM names the first
time that BPM is accessed and stores the index for subsequent access. The DLL also
maintains other state informations such: whether the name was found, whether the
fad succeeded in initialization, etc.

Applications that use fadlib must have access to light40 (the main file server).

1. If not done already, assign y: to \\light40\controls and z: to
\\light40\rootd.

2. Put z:\lib\controls\fadlib.lib (the import library) in the LIB
enviornmental variable.

3. \opstat\rbin must be in the executable path.

4. \include\controls\fadlib.h has the C prototypes and manifest constants

Subroutines
Arguments:

Error Code returned

Sector: 1-4 (BR)  1-12 (SR)

Number: 1-8

DataType:  fast/slow; xy/raw

Slow Fad Frequency: 1-4

Data Array returned: floats
(BR) or ints (SR)

The first argument is almost always an Error Code that is used by the routine to
report the status of the operation. The number returned can be decoded by a call to
'dbgeterr' (see sample code) so that a reasonable error message can be displayed. To
control a specific FAD, the routines usually accept a 'sector number' followed by a
'BPM number'. For the booster, the sector number is from 1 to 4 for the storage ring
the number is 1 to 12. In both cases the BPM number is 1 to 8. In addition, some
routines are capable of controlling multiple FADs (for example all the storage ring
fads). For these routines the convention is to set sector and bpm number to 0. The
routines return arrays or structures of a variety of types but the booster routines
usually return floating point arrays (single precision) whereas the storage ring
routines return arrays of integers (since the FADs only digitize to 8 bit accuracy).

The routines fall in 3 broad categories: initialization, set read mode, and read data.



8  ••  Using FADLIB ALS controls Accessing the BPM FADs

/* initialization routines */

int _far _pascal _export
init_br_fad ( int _far *Err, int sect, int nr, int freq) ;

Enable fad (sect,nr) and set the frequency of the slow fifo.
int _far _pascal _export
init_sr_fad( int _far *Err, int sect, int nr, int freq);

Enable fad (sect,nr) and set the frequency of the slow fifo. Setting both sector and
number to 0, initializes all fads.

/* single trigger mode */

void _far _pascal _export
wait_br_fad_trigger (int _far *Err, int sect, int nr, int maxwait );

Waits until FAD (sect,nr) receives a halt trigger after an initialization. 'maxwait' is
ignored.

void _far _pascal _export
wait_sr_fad_trigger (int _far *Err, int sect, int nr, int maxwait );

Waits until FAD (sect,nr) receives a halt trigger after an initialization. 'maxwait' is
ignored.

/* set read mode */

void _far _pascal _export
set_br_fadmode( int _far *Err, int _far *datatype, int sect, int nr );

Sets the read mode of the (sect,nr) fad for the booster. Possible read modes are to
return: raw, x, or y data from the fast or slow FIFO either full (1023 turns) or
abrieviated (20 turn xy data combined) data.

void _far _pascal _export
set_sr_fadmode( int _far *Err, int _far *datatype, int sect, int nr );

Sets the read mode of the (sect,nr) fad for the storage ring. Possible read modes are
to return: raw or x and y data from the fast or slow FIFO either full 1023 turns, in
single trigger mode, or 20 turns in continuous trigger mode.

void _far _pascal
start_br_fads(int _far * ErrCode, int _far *datatype, unsigned long fad_mask);

A special call to handle: initializing, waiting for trigger, setting datatype, and
waiting for valid data for a random assortment of booster FADS. The routine is
passed a fad_mask with a bit set for each of the 32 bpms in the booster ring. A value
of 0xffffffff sets all FADs in the booster ring; a value of 0x01 sets the first one, etc.

void _far _pascal _export
select_sr_fad_fifo( int _far *Err, int _far *datatype, int sect, int nr );

Simalar to set_sr_fadmode, but it accepts sect = nr = 0 as a command to set all
FADs in the storage ring to the desired data type.

void _far _pascal _export
DbSetSync(  UBYTE2 _far *Err, int EventType, int ListNr, UBYTE2 _far *Cnt);



ALS controls Accessing the BPM FADs Using FADLIB  ••  9

Meant to handle access of multiple database items in a list labeled ListNr,
synchronized on event EventType. For the Storage ring FADs, ListNr = 1 and
EventType =1 synchronizes all the storage ring fads so that subsequent calls to
DbGetSync returns synchronized data from all the FADs. When DbSetSync is
called, the DLL records a fiducial count for each of the BPMs in the storage ring;
the value of this count for the first bpm is returned in Cnt. DbSetSync must be
called once before DbGetSync is called to read the data.

/* data access */

int _far _pascal _export
DbGetSync(  UBYTE2 _far *Err, int ListNr, UBYTE1 _far *DataArray, int Nr, UBYTE2 _far *Cnt);

Can be used to get synchronized data from a list (ListNr) of database items. For
storage ring fads, ListNr=1 returns abrieviated (20 turn) data in one of two formats:
in xy format DataArray contains 40 integers for each FAD; the 40 integers are
organized as 20 pairs of xy data in meters. In 'sum' format, DataArray contains 20
integers for each fad; each integer represents the sum of 4 button signals (0-1020).
Cnt contains the value of the counter of the first bpm; this is the count that is used
for synchronization by FADLIB, but is not used by the application typically.

Returns the number of bpms that failed to sync.
int _far _pascal _export
GetFadStatus (int type, char _far FadName[][DB_FULLNAMELEN+1], UBYTE4 _far FadIndex[], UBYTE2 _far
FadStat[], int Nr);

Retrieves an 8 bit encoded status byte, a bpm name, and a bpm index ilc (of the bp
channel) for each bpm in the storage ring. The status byte contains a bit set to 1 for
each of the following successful operations: bpm name found (1),  frequency set (2),
fad enabled (4), data mode set (8), SetSync succeeded (16), and GetSync
succeeded(32).

void _far _pascal _export
read_br_fad_raw( UBYTE2 _far *ErrCode, int _far *start_turn,  int _far *end_turn, int sect, int nr, UBYTE1 _far
*Buts);

Returns the value of the FAD (sect,nr) for the booster. start_turn should be 1 and
end_turn should be 1023. Buts contains an array of 4096 bytes organized as
button1, 2, 3 and 4 for each turn. Byte values range from 0 to 255.

void _far _pascal _export
read_sr_fad_raw( UBYTE2 _far *ErrCode, int _far *start_turn, int _far *end_turn, int sect, int nr, UBYTE1 _far
*Buts);

Returns the raw button values of the FAD (sect,nr) for the storage ring. start_turn
should be 1 and end_turn should be 1023. Buts contains an array of 4096 bytes
organized as a byte for button1, 2, 3 and 4 for each turn. Byte values range from 0
to 255.

void _far _pascal
read_br_fad_xy ( UBYTE2 _far *ErrCode, int _far *start_i, int _far *end_i, int sect, int nr, float _far *ByteArray);

Returns the x or y position values of the FAD (sect,nr) for the booster. start_turn
should be 1 and end_turn should be 1023. Buts contains an array of 1024 floating
point values representing x or y in millimeters. Values range from 0 to 30 (30 or
larger indicate failure).

void _far _pascal _export
read_sr_fad_xy( UBYTE2 _far *ErrCode, int _far *start_turn, int _far *end_turn, int sect, int nr, int _far
*ByteArray);



10  ••  Using FADLIB ALS controls Accessing the BPM FADs

Returns the x or y position values of the FAD (sect,nr) for the storage ring.
start_turn should be 1 and end_turn should be 1023. Buts contains an array of 2048
integer values organized in pairs of x, y values measured in meters. Typical range is
0 to 30,000. Numbers of 30,000 or greater indicate failure.

void _far _pascal
read_br_fad_quick ( UBYTE2 _far *ErrCode, int sect, int nr, FAD_QUICK_TYPE _far *fad);

Reads data from one booster ring fad in a special abrieviated data mode called
'quick' mode. In quick mode, a booster fad ilc just returns 20 turns of xy or 4 button
raw data using the FAD_QUICK_TYPE structure.

void _far _pascal _export
ffad_read ( UBYTE2 _far *ErrCode, int sect, int nr, FADCONTXY _far *fad);

Reads one storage ring fad (sect,nr) in the continuous trigger mode. The data is
returned in the FADCONTXY structure.

Structures
typedef struct {

float x;
float y;

} FADPOSTYPE;

typedef struct {
FADPOSTYPE pos[FADNTURN];
UBYTE1 b1[FADNTURN];
UBYTE1 b2[FADNTURN];
UBYTE1 b3[FADNTURN];
UBYTE1 b4[FADNTURN];

} FAD_QUICK_TYPE;

typedef struct {
UBYTE2 cnt;
int x[FADNTURN];
int y[FADNTURN];

} FADCONTXY;

typedef struct {
UBYTE2 cnt;
UBYTE2 sum[FADNTURN];

} FADCONTSUM;

Constants
#define MAXBRBPMS 32
#define FIRSTSRBPM 32
#define LASTSRBPM 127
#define MAXSRBPMS 96
#define NRTURNS 1024
#define FADNTURN 20



ALS controls Accessing the BPM FADs Using FADLIB  ••  11

#define BRFADTYPE 0
#define SRFADTYPE 1
#define FADNAMELEN 13

/* triggering & handshake */
#define FADASKTRIG 50
#define FADTRIGGERED 200
#define FADNOTTRIGGERED 201
#define FADRESETCMND 0
#define FADRESET 100
/* set with init_br_fad */
#define FADFREQ1 1
#define FADFREQ10 2
#define FADFREQ100 3
#define FADFREQ1000 4
/* fast mode for br only */
#define FADQUICKFAST 5
#define FADQUICKSLOW 6
/* set with set_br_fadmode (FF means return FADNTURN turns)*/
#define FADRAW 20
#define FADX 21
#define FADY 22
#define FADRAWSLOW 30
#define FADXSLOW 31
#define FADYSLOW 32
#define FADNTURNRAW 40
#define FADNTURNXY 41
#define FFADXYFASTS 45
#define FFADXYSLOWS 46
#define FFADSUMFASTS 47
#define FFADSUMSLOWS 48
/* continuous mode stuff set with set_fad_fifo (sr only)*/
#define FFADXYFAST 5
#define FFADXYSLOW 6
#define FFADSUMFAST 7
#define FFADSUMSLOW 8

Sample Code

Example of Continuous Mode read of Storage Ring FADs
#ifdef _WINDOWS
#include <windows.h>
#endif
#include <stdio.h>
#include <ptypes.h>
#include <string.h>
#include <conio.h>
#include <stdlib.h>
#include <dbdefine.h>
#include <time.h>
#include <fadlib.h>
#include <llinkc.h>



12  ••  Using FADLIB ALS controls Accessing the BPM FADs

void far pascal REPORT(int, int, char _far *);
#define dbgeterr(x,y) REPORT(x, 0, y)

struct {
int x[FADNTURN];
int y[FADNTURN];

} FadXY[MAXSRBPMS];

struct {
int sum[FADNTURN];

} FadSum[MAXSRBPMS];

char Names[MAXSRBPMS][DB_FULLNAMELEN+1];
UBYTE4 Indices[MAXSRBPMS];
UBYTE2 Status[MAXSRBPMS];

/* illustrates the use of CONTINUOUS MODE READ for STORAGE RING FADs */
void main(int argc, char *argv[] )
{
 int ErrCode, sr, nr, freq, i, AccessMode, tries, fails, failures,fadnr;
 int firstsr, lastsr, sum, Nr;
 UBYTE2 Cnt;
 static char ErrStr[80];
 float x, y;

/* access the 'sum of buttons' from the FAST fifo */
 AccessMode = FFADSUMFAST;
 /*AcessMode = FFADXYFAST;*/
 freq=1;
 failures = 0;
 firstsr = 1;
 lastsr = 12;
                      /* initialize all fads */
 printf("initializing all fads\n");
 failures = init_sr_fad ( &ErrCode, 0, 0, freq);
 if (ErrCode) {
        dbgeterr(ErrCode, ErrStr);
        printf("cant init fads\n");
        printf("%s\n", ErrStr);
 }
 printf ("%u Failed to initialize\n\n",failures);

                     /* set all fads to cont. read (sum) */

 select_sr_fad_fifo( &ErrCode, &AccessMode, 0, 0 );
 if (ErrCode) {

dbgeterr(ErrCode, ErrStr);
printf("cant select fad: %d %d\n", sr, nr);
printf("%s\n", ErrStr);

 }



ALS controls Accessing the BPM FADs Using FADLIB  ••  13

                      /* SET sync */
 printf("setsync\n");
 DbSetSync( &ErrCode, 1, 1, &Cnt);
 if (ErrCode) {

dbgeterr(ErrCode, ErrStr);
printf("Some FADs failed to sync\n");
printf("%s\n", ErrStr);

 }
 printf("count %u\n\n", Cnt);

GETSYNC:
 for (i = 1; i <= 1; i++) {
 printf("getsync\n");
 fails = 0;
 while ((fadnr=DbGetSync( &ErrCode, 1, (UBYTE1 *)&FadSum, 100, &Cnt)) && fails < 1) {
 if (ErrCode) {
 printf("%d fads failed to sync\n",fadnr);

dbgeterr(ErrCode, ErrStr);
 fails ++;
 }
 }
 printf("count %u \n\n", Cnt);
 }
 Nr = MAXSRBPMS;
 GetFadStatus(SRFADTYPE, Names, Indices, Status, Nr);

 if ( AccessMode == FFADSUMFAST ) {
for ( sr = firstsr; sr <= lastsr; sr++ ) {

 printf("sr %d: ", sr);
 for ( nr = 1; nr <= 8; nr++ ) {
     i = (sr-1)*8+nr-1;
 sum =  FadSum[i].sum[0];
 printf("%u ", sum, Status[i]);
 if (Status[i] != 0x3f)
 printf("(%x)\t", Status[i]);
 else
 printf("\t");
    }
    printf("\n");
  }
  } else {
  for ( sr = firstsr; sr <= lastsr; sr++ ) {
 printf("sr %d:", sr );
 for ( nr = 1; nr <= 8; nr++ ) {
      i = (sr-1)*8+nr-1;

x =  FadXY[i].x[0]/1000.0;
 y =  FadXY[i].y[0]/1000.0;
 printf("(%.4f,%.4f):%x\t", x, y, Status[i]);
    }
    printf("\n");
    }
  }
 goto GETSYNC;



14  ••  Using FADLIB ALS controls Accessing the BPM FADs

 /* check status */
 printf ("done\n");

Example of Single Trigger access of Storage Ring Fads
//
// savefad.c: saves all 1024 turns of all 96 storage ring fads in 2
// files whose name is entered by the user. 'xy' and 'raw' are appended
// to the file name to store xy and raw data. To make an FFT easy,
// 1024 turns, rather than the 1023 that the fads really return,
// are stored. The 1024th entry is just copied from the 1023rd entry.
//
#include <stdio.h>
#include <string.h>
#include <report.h>
#include <dbdefine.h>
#include <time.h>
#include <linkc.h>
#include <fadlib.h>

#define dbgeterr(x,y) REPORT(x, 0, y)

void GetFileName(void);

struct {
UBYTE2 cnt;
UBYTE1 button[4][1024];

} FadRaw;

struct {
UBYTE2 cnt;
int x[1024];
int y[1024];

} FadXY;

char ErrStr[81];
char Names[MAXSRBPMS][DB_FULLNAMELEN+1];
UBYTE4 Indices[MAXSRBPMS];
UBYTE2 Status[MAXSRBPMS];
static FILE *fh, *fhraw;

void main(argc,argv)
int argc;
char* argv[];
{
   int ErrCode, i, j, start_i, end_i, datatype, Nr;
   UBYTE2 ilc_array[32], delaytime;
   int nr, sr, freq, sr_off, failures;
   char type, ans[80];
   float sum, x, y;
   int firstsr, lastsr, turn, b;



ALS controls Accessing the BPM FADs Using FADLIB  ••  15

 freq = 1 ;
 turn = 1;
 start_i = 1; end_i = 1023;
 delaytime = 200;
 firstsr = 1; lastsr = 12;

 Logon (&ErrCode, &Nr, ilc_array, "light46");
 if (ErrCode) {

 dbgeterr(ErrCode, ErrStr);
 printf("%s\n", ErrStr);
 exit(1);

 }

 GetFileName();

                      /* initialize all fads */
 printf("\nRemove trigger cable. Ready ?  (y/n)\n");
 scanf("%s", &ans);

//
//With trigger cable removed, arm all the fads
//
 printf("initializing all fads\n");
 failures = init_sr_fad ( &ErrCode, 0, 0, freq);
 if (ErrCode) {
        dbgeterr(ErrCode, ErrStr);
        printf("cant init fads\n");
        printf("%s\n", ErrStr);
 }
 if (failures > 0) {

 printf ("%u Failed to initialize\n\n",failures);
 GetFadStatus(SRFADTYPE, Names, Indices, Status, MAXSRBPMS);

 }

 sr = nr = 1;
 printf("\nRestore trigger cable. Ready ?  (y/n)\n");
 scanf("%s", &ans);
//
// restore the cable. The FADs will trigger on the next FAD Halt Trigger
//
 wait_sr_fad_trigger (&ErrCode, sr, nr, 100 );
 if (ErrCode) {

dbgeterr(ErrCode, ErrStr);
printf("cant get fad trigger for sector %d bpm %d \n",sr,nr);
 printf("%s\n", ErrStr);
exit(1);

 } else {
 printf("Triggered\n");
 }

//
// For the storage ring, xy position come back in the same structure
// as integers



16  ••  Using FADLIB ALS controls Accessing the BPM FADs

//
datatype =FADXSLOW;
select_sr_fad_fifo( &ErrCode, &datatype, 0, 0 );
if (ErrCode) {

dbgeterr(ErrCode, ErrStr);
printf("cant select fad: %d %d\n", sr, nr);
printf("%s\n", ErrStr);

//exit(1);
}
start_i = 1;  end_i = 1023;
DELAY(&delaytime); // wait for data to arrive at CMM

// read all storage ring fads
for ( sr = firstsr; sr <= lastsr; sr++ ) {

printf("sr %d:", sr );
for ( nr = 1; nr <= 8; nr++ ) {

printf(" %d", nr );
fprintf(fh,"#%d\t%d",sr,nr);
read_sr_fad_xy(&ErrCode, &start_i, &end_i, sr, nr, &FadXY);

 if (ErrCode) {
         dbgeterr(ErrCode, ErrStr);
         printf("%s", ErrStr);
         fprintf(fh," Error");
 }
 fprintf(fh,"\n");
 printf("\n");

for (turn = 0; turn < 1023; turn++) {
x = ((ErrCode) ? 0.0 : FadXY.x[turn]/1000.0);
y =  ((ErrCode) ? 0.0 : FadXY.y[turn]/1000.0);

 fprintf(fh,"%d\t%.4f\t%.4f\n", turn, x, y);
 }
 fprintf(fh,"%d\t%.4f\t%.4f\n", turn, x, y);

 }
}

 printf("\n");
 fclose(fh);

 fh = fhraw;
//
// Read raw values
//
 datatype = FADRAW;

 select_sr_fad_fifo( &ErrCode, &datatype, 0, 0 );
 if (ErrCode) {

dbgeterr(ErrCode, ErrStr);
printf("cant select fad: %d %d\n", sr, nr);
printf("%s\n", ErrStr);

//exit(1);
 }



ALS controls Accessing the BPM FADs Using FADLIB  ••  17

 DELAY(&delaytime);

 GetFadStatus(SRFADTYPE, Names, Indices, Status, MAXSRBPMS);

 for ( sr = firstsr; sr <= lastsr; sr++ ) {
 printf("sr %d:\n", sr);

for ( nr = 1; nr <= 8; nr++ ) {
fprintf(fh,"#%d\t%d",sr,nr);
printf("(%u,%u)", sr, nr);

 read_sr_fad_raw(&ErrCode, &start_i, &end_i, sr, nr, (UBYTE1 *)&FadRaw);
 if (ErrCode) {

 dbgeterr(ErrCode, ErrStr);
 printf("%s\n", ErrStr);
 fprintf(fh,"%s\n", ErrStr);

 }
        fprintf(fh,"\n");
        printf("\n");

for (turn = 0; turn < 1023; turn++) {
 fprintf(fh,"%d\t", turn);

for (b = 0; b < 4; b++) {
 if (ErrCode)
 fprintf(fh,"%u ", 0.0);
 else
 fprintf(fh,"%u ", FadRaw.button[b][turn]);
 fprintf(fh,"\t");
 }

fprintf(fh,"\n");
}
fprintf(fh,"\n");

}
fprintf(fh,"\n");

 }

 printf("%u turns\n",(end_i-start_i+1));

}





ALS controls Accessing the BPM FADs Glossary of Terms  ••  19

Glossary of Terms

A/D
Analog to Digital converter. For BPMs, converts the analog signal from the beam
pickup to a digital value read by the ILC.

BPM
Beam Position Monitor. A non destructive position monitor using 4 pickups. There
are 32 in the booster and 96 in the storage ring.

buttons
The pickups used by the beam position monitors.

calibration
To compensate for the differences in the amplifiers connected to the BPM buttons,
the ILC can be told to perform a calibration.

CMM
Collector Micro Module located in the control room keeps the complete database.
Applications read data from this data base.

continuous trigger
A mode of fad data aquistion.  Storage ring fad ILCs can be told to aquire data
every time a halt trigger is detected. In single trigger mode the fifo data is frozen
until the fad is told by an application to initialize.

FAD
Fast Analog to Digital Converter used by BPMs to digitize signals from the pick-
ups to 8 bit accuracy at the rate of the beam revolution.



20  ••  Glossary of Terms ALS controls Accessing the BPM FADs

Halt Trigger
A trigger brought into the FAD electronics that stops the FIFO data gathering. This
trigger occurs once a second in the booster.

ILC
Intelligent Local Controller. The computer built into the BPM electronics to provide
local control functions such as xy calculations and to communicate with the main
control system.

Slow FIFO
Slow First-In-First-Out buffer that has space for 1023 entries used to store up to
1023 turns of data digitized at either the at 1,10,100, or 1000 times the beam
revolution frequency.

slow mode
A slow mode reading refers to the  16 bit A/D reading valid when more than 1 ms
of circulating beam is present.

triggering
A fad is 'triggered' when an external signal tells the fad to stop aquiring data.



ALS controls Accessing the BPM FADs Index  ••  21

Index

D

DbGetSync 9, 13
DbSetSync 8, 13

F

ffad_read 10

G

GetFadStatus 9, 13

I

init_br_fad 8, 11
init_sr_fad 8, 12

R

read_br_fad_quick 10
read_br_fad_raw 9
read_br_fad_xy 9
read_sr_fad_raw 9
read_sr_fad_xy 10

S

select_sr_fad_fifo 8, 12
set_br_fadmode 8, 11
set_sr_fadmode 8
start_br_fads 8

W

wait_br_fad_trigger 8
wait_sr_fad_trigger 8


